On the Picard bundle

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Picard Bundle

Fix a holomorphic line bundle ξ over a compact connected Riemann surface X of genus g, with g ≥ 2, and also fix an integer r such that degree(ξ) > r(2g−1). Let Mξ(r) denote the moduli space of stable vector bundles overX of rank r and determinant ξ. The Fourier–Mukai transform, with respect to a Poincaré line bundle on X × J(X), of any F ∈Mξ(r) is a stable vector bundle on J(X). This gives an e...

متن کامل

00 1 Deformations of the Picard Bundle

Let X be a nonsingular algebraic curve of genus g ≥ 3, and M ξ the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d coprime and d > n(2g − 2). We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3. Let W ξ (L) denote the vector bundle over M ξ defined as the direct image π * (U ξ ⊗ p * 1 L) where U ξ is a universal vector bu...

متن کامل

Deformations of the Generalised Picard Bundle

Let X be a nonsingular algebraic curve of genus g ≥ 3, and let Mξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime. We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3, and suppose further that n0, d0 are integers such that n0 ≥ 1 and nd0 + n0d > nn0(2g − 2). Let E be a semistable vector bundle over ...

متن کامل

0 Ju n 20 02 DEFORMATIONS OF THE PICARD BUNDLE

Let X be a nonsingular algebraic curve of genus g ≥ 3, and let M ξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime and d > n(2g − 2). We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3. Let W ξ (L) denote the vector bundle over M ξ defined by the direct image p M ξ * (U ξ ⊗ p * X L) where U ξ is a ...

متن کامل

On Ricci identities for submanifolds in the 2-osculator bundle

It is the purpose of the present paper to outline an introduction in theory of embeddings in the 2-osculator bundle. First, we recall the notion of 2-osculator bundle ([9], [2], [4]) and the notion of submani-folds in the 2-osculator bundle ([9]). A moving frame is constructed. The induced connections and the relative covariant derivation are discussed in the fourth and fifth section ([15], [16...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2009

ISSN: 0007-4497

DOI: 10.1016/j.bulsci.2008.08.004